24 research outputs found

    An empirical comparison of surface-based and volume-based group studies in neuroimaging

    Get PDF
    International audienceBeing able to detect reliably functional activity in a population of subjects is crucial in human brain mapping, both for the understanding of cognitive functions in normal subjects and for the analysis of patient data. The usual approach proceeds by normalizing brain volumes to a common three-dimensional template. However, a large part of the data acquired in fMRI aims at localizing cortical activity, and methods working on the cortical surface may provide better inter-subject registration than the standard procedures that process the data in the volume. Nevertheless, few assessments of the performance of surface-based (2D) versus volume-based (3D) procedures have been shown so far, mostly because inter-subject cortical surface maps are not easily obtained. In this paper we present a systematic comparison of 2D versus 3D group-level inference procedures, by using cluster-level and voxel-level statistics assessed by permutation, in random effects (RFX) and mixed-effects analyses (MFX). We consider different schemes to perform meaningful comparisons between thresholded statistical maps in the volume and on the cortical surface. We find that surface-based multi-subject statistical analyses are generally more sensitive than their volume-based counterpart, in the sense that they detect slightly denser networks of regions when performing peak-level detection; this effect is less clear for cluster-level inference and is reduced by smoothing. Surface-based inference also increases the reliability of the activation maps

    Detecting Outliers in High-Dimensional Neuroimaging Datasets with Robust Covariance Estimators

    Get PDF
    International audienceMedical imaging datasets often contain deviant observations, the so-called outliers, due to acquisition or preprocessing artifacts or resulting from large intrinsic inter-subject variability. These can undermine the statistical procedures used in group studies as the latter assume that the cohorts are composed of homogeneous samples with anatomical or functional features clustered around a central mode. The effects of outlying subjects can be mitigated by detecting and removing them with explicit statistical control. With the emergence of large medical imaging databases, exhaustive data screening is no longer possible, and automated outlier detection methods are currently gaining interest. The datasets used in medical imaging are often high-dimensional and strongly correlated. The outlier detection procedure should therefore rely on high-dimensional statistical multivariate models. However, state-of-the-art procedures are not well-suited for such high-dimensional settings. In this work, we introduce regularization in the MCD framework and investigate different regularization schemes. We carry out extensive simulations to provide backing for practical choices in absence of ground truth knowledge. We demonstrate on functional neuroimaging datasets that outlier detection can be performed with small sample sizes and improves group studies

    Analyse statistique de données en grande dimension (application à l'étude de la variabilité inter-individuelle en neuroimagerie)

    Get PDF
    La variabilité inter-individuelle est un obstacle majeur à l'analyse d'images médicales, en particulier en neuroimagerie. Il convient de distinguer la variabilité naturelle ou statistique, source de potentiels effets d'intérêt pour du diagnostique, de la variabilité artefactuelle, constituée d'effets de nuisance liés à des problèmes expérimentaux ou techniques, survenant lors de l'acquisition ou le traitement des données. La dernière peut s'avérer bien plus importante que la première : en neuroimagerie, les problèmes d'acquisition peuvent ainsi masquer la variabilité fonctionnelle qui est par ailleurs associée à une maladie, un trouble psychologique, ou à l'expression d'un code génétique spécifique. La qualité des procédures statistiques utilisées pour les études de groupe est alors diminuée car lesdites procédures reposent sur l'hypothèse d'une population homogène, hypothèse difficile à vérifier manuellement sur des données de neuroimagerie dont la dimension est élevée. Des méthodes automatiques ont été mises en oeuvre pour tenter d'éliminer les sujets trop déviants et ainsi rendre les groupes étudiés plus homogènes. Cette pratique n'a pas entièrement fait ses preuves pour autant, attendu qu'aucune étude ne l'a clairement validée, et que le niveau de tolérance à choisir reste arbitraire. Une autre approche consiste alors à utiliser des procédures d'analyse et de traitement des données intrinsèquement insensibles à l'hypothèse d'homogénéité. Elles sont en outre mieux adaptées aux données réelles en ce qu'elles tolèrent dans une certaine mesure d'autres violations d'hypothèse plus subtiles telle que la normalité des données. Un autre problème, partiellement lié, est le manque de stabilité et de sensibilité des méthodes d'analyse au niveau voxel, sources de résultats qui ne sont pas reproductibles.Nous commençons cette thèse par le développement d'une méthode de détection d'individus atypiques adaptée aux données de neuroimagerie, qui fournit un contrôle statistique sur l'inclusion de sujets : nous proposons une version regularisée d'un estimateur de covariance robuste pour le rendre utilisable en grande dimension. Nous comparons plusieurs types de régularisation et concluons que les projections aléatoires offrent le meilleur compromis. Nous présentons également des procédures non-paramétriques dont nous montrons la qualité de performance, bien qu'elles n'offrent aucun contrôle statistique. La seconde contribution de cette thèse est une nouvelle approche, nommée RPBI (Randomized Parcellation Based Inference), répondant au manque de reproductibilité des méthodes classiques. Nous stabilisons l'approche d'analyse à l'échelle de la parcelle en agrégeant plusieurs analyses indépendantes, pour lesquelles le partitionnement du cerveau en parcelles varie d'une analyse à l'autre. La méthode permet d'atteindre un niveau de sensibilité supérieur à celui des méthodes de l'état de l'art, ce que nous démontrons par des expériences sur des données synthétiques et réelles. Notre troisième contribution est une application de la régression robuste aux études de neuroimagerie. Poursuivant un travail déjà existant, nous nous concentrons sur les études à grande échelle effectuées sur plus de cent sujets. Considérant à la fois des données simulées et des données réelles, nous montrons que l'utilisation de la régression robuste améliore la sensibilité des analyses. Nous démontrons qu'il est important d'assurer une résistance face aux violations d'hypothèse, même dans les cas où une inspection minutieuse du jeu de données a été conduite au préalable. Enfin, nous associons la régression robuste à notre méthode d'analyse RPBI afin d'obtenir des tests statistiques encore plus sensibles.La variabilité inter-individuelle est un obstacle majeur à l'analyse d'images médicales, en particulier en neuroimagerie. Il convient de distinguer la variabilité naturelle ou statistique, source de potentiels effets d'intérêt pour du diagnostique, de la variabilité artefactuelle, constituée d'effets de nuisance liés à des problèmes expérimentaux ou techniques, survenant lors de l'acquisition ou le traitement des données. La dernière peut s'avérer bien plus importante que la première : en neuroimagerie, les problèmes d'acquisition peuvent ainsi masquer la variabilité fonctionnelle qui est par ailleurs associée à une maladie, un trouble psychologique, ou à l'expression d'un code génétique spécifique. La qualité des procédures statistiques utilisées pour les études de groupe est alors diminuée car lesdites procédures reposent sur l'hypothèse d'une population homogène, hypothèse difficile à vérifier manuellement sur des données de neuroimagerie dont la dimension est élevée. Des méthodes automatiques ont été mises en oeuvre pour tenter d'éliminer les sujets trop déviants et ainsi rendre les groupes étudiés plus homogènes. Cette pratique n'a pas entièrement fait ses preuves pour autant, attendu qu'aucune étude ne l'a clairement validée, et que le niveau de tolérance à choisir reste arbitraire. Une autre approche consiste alors à utiliser des procédures d'analyse et de traitement des données intrinsèquement insensibles à l'hypothèse d'homogénéité. Elles sont en outre mieux adaptées aux données réelles en ce qu'elles tolèrent dans une certaine mesure d'autres violations d'hypothèse plus subtiles telle que la normalité des données. Un autre problème, partiellement lié, est le manque de stabilité et de sensibilité des méthodes d'analyse au niveau voxel, sources de résultats qui ne sont pas reproductibles.Nous commençons cette thèse par le développement d'une méthode de détection d'individus atypiques adaptée aux données de neuroimagerie, qui fournit un contrôle statistique sur l'inclusion de sujets : nous proposons une version regularisée d'un estimateur de covariance robuste pour le rendre utilisable en grande dimension. Nous comparons plusieurs types de régularisation et concluons que les projections aléatoires offrent le meilleur compromis. Nous présentons également des procédures non-paramétriques dont nous montrons la qualité de performance, bien qu'elles n'offrent aucun contrôle statistique. La seconde contribution de cette thèse est une nouvelle approche, nommée RPBI (Randomized Parcellation Based Inference), répondant au manque de reproductibilité des méthodes classiques. Nous stabilisons l'approche d'analyse à l'échelle de la parcelle en agrégeant plusieurs analyses indépendantes, pour lesquelles le partitionnement du cerveau en parcelles varie d'une analyse à l'autre. La méthode permet d'atteindre un niveau de sensibilité supérieur à celui des méthodes de l'état de l'art, ce que nous démontrons par des expériences sur des données synthétiques et réelles. Notre troisième contribution est une application de la régression robuste aux études de neuroimagerie. Poursuivant un travail déjà existant, nous nous concentrons sur les études à grande échelle effectuées sur plus de cent sujets. Considérant à la fois des données simulées et des données réelles, nous montrons que l'utilisation de la régression robuste améliore la sensibilité des analyses. Nous démontrons qu'il est important d'assurer une résistance face aux violations d'hypothèse, même dans les cas où une inspection minutieuse du jeu de données a été conduite au préalable. Enfin, nous associons la régression robuste à notre méthode d'analyse RPBI afin d'obtenir des tests statistiques encore plus sensibles.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Enhancing the Reproducibility of Group Analysis with Randomized Brain Parcellations

    Get PDF
    International audienceNeuroimaging group analyses are used to compare the inter-subject variability observed in brain organization with behavioural or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity of current voxel-based analysis schemes may however lead to non-reproducible results. A new approach is introduced to overcome the limitations of standard methods, in which active voxels are detected according to a consensus on several random parcellations of the brain images, while a permutation test controls the false positive risk. Both on syntetic and real data, this approach shows higher sensitivity, better recovery and higher reproducibility than standard methods and succeeds in detecting a significant association in an imaging-genetic study between a genetic variant next to the COMT gene and a region in the left thalamus on a functional Magnetic Resonance Imaging contrast

    Non-parametric Density Modeling and Outlier Detection in Medical Imaging Datasets

    Get PDF
    International audienceThe statistical analysis of medical images is challenging because of the high dimensionality and low signal-to-noise ratio of the data. Simple parametric statistical models, such as Gaussian distributions, are well-suited to high-dimensional settings. In practice, on medical data made of heterogeneous subjects, the Gaussian hypothesis seldom holds. In addition, alternative parametric models of the data tend to break down due to the presence of outliers that are usually removed manually from studies. Here we focus on interactive detection of these outlying observations, to guide the practitioner through the data inclusion process. Our contribution is to use Local Component Analysis as a non-parametric density estimator for this purpose. Experiments on real and simulated data show that our procedure separates well deviant observations from the relevant and representative ones. We show that it outperforms state-of-the-art approaches, in particular those involving a Gaussian assumption

    Robust Group-Level Inference in Neuroimaging Genetic Studies

    Get PDF
    International audienceGene-neuroimaging studies involve high-dimensional data that have a complex statistical structure and that are likely to be contaminated with outliers. Robust, outlier-resistant methods are an alternative to prior outliers removal, which is a difficult task under high-dimensional unsupervised settings. In this work, we consider robust regression and its application to neuroimaging through an example gene-neuroimaging study on a large cohort of 300 subjects. We use randomized brain parcellation to sample a set of adapted low-dimensional spatial models to analyse the data. We combine this approach with robust regression in an analysis method that we show is outperforming state-of-the-art neuroimaging analysis methods

    Enhancing the Reproducibility of Group Analysis with Randomized Brain Parcellations

    Get PDF
    International audienceNeuroimaging group analyses are used to compare the inter-subject variability observed in brain organization with behavioural or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity of current voxel-based analysis schemes may however lead to non-reproducible results. A new approach is introduced to overcome the limitations of standard methods, in which active voxels are detected according to a consensus on several random parcellations of the brain images, while a permutation test controls the false positive risk. Both on syntetic and real data, this approach shows higher sensitivity, better recovery and higher reproducibility than standard methods and succeeds in detecting a significant association in an imaging-genetic study between a genetic variant next to the COMT gene and a region in the left thalamus on a functional Magnetic Resonance Imaging contrast

    Oxytocin Receptor Genotype Modulates Ventral Striatal Activity to Social Cues and Response to Stressful Life Events

    Get PDF
    Background Common variants in the oxytocin receptor gene (OXTR) have been shown to influence social and affective behavior and to moderate the effect of adverse experiences on risk for social-affective problems. However, the intermediate neurobiological mechanisms are not fully understood. Although human functional neuroimaging studies have reported that oxytocin effects on social behavior and emotional states are mediated by amygdala function, animal models indicate that oxytocin receptors in the ventral striatum (VS) modulate sensitivity to social reinforcers. This study aimed to comprehensively investigate OXTR-dependent brain mechanisms associated with social-affective problems. Methods In a sample of 1445 adolescents we tested the effect of 23-tagging single nucleotide polymorphisms across the OXTR region and stressful life events (SLEs) on functional magnetic resonance imaging blood oxygen level-dependent activity in the VS and amygdala to animated angry faces. Single nucleotide polymorphisms for which gene-wide significant effects on brain function were found were then carried forward to examine associations with social-affective problems. Results A gene-wide significant effect of rs237915 showed that adolescents with minor CC-genotype had significantly lower VS activity than CT/TT-carriers. Significant or nominally significant gene × environment effects on emotional problems (in girls) and peer problems (in boys) revealed a strong increase in clinical symptoms as a function of SLEs in CT/TT-carriers but not CC-homozygotes. However, in low-SLE environments, CC-homozygotes had more emotional problems (girls) and peer problems (boys). Moreover, among CC-homozygotes, reduced VS activity was related to more peer problems. Conclusions These findings suggest that a common OXTR-variant affects brain responsiveness to negative social cues and that in "risk- carriers" reduced sensitivity is simultaneously associated with more social-affective problems in "favorable environments" and greater resilience against stressful experiences. © 2014 Society of Biological Psychiatry

    Analyse statistique de données en grande dimension : application à l'étude de la variabilité inter-individuelle en neuroimagerie

    No full text
    La variabilité inter-individuelle est un obstacle majeur à l'analyse d'images médicales, en particulier en neuroimagerie. Il convient de distinguer la variabilité naturelle ou statistique, source de potentiels effets d'intérêt pour du diagnostique, de la variabilité artefactuelle, constituée d'effets de nuisance liés à des problèmes expérimentaux ou techniques, survenant lors de l'acquisition ou le traitement des données. La dernière peut s'avérer bien plus importante que la première : en neuroimagerie, les problèmes d'acquisition peuvent ainsi masquer la variabilité fonctionnelle qui est par ailleurs associée à une maladie, un trouble psychologique, ou à l'expression d'un code génétique spécifique. La qualité des procédures statistiques utilisées pour les études de groupe est alors diminuée car lesdites procédures reposent sur l'hypothèse d'une population homogène, hypothèse difficile à vérifier manuellement sur des données de neuroimagerie dont la dimension est élevée. Des méthodes automatiques ont été mises en oeuvre pour tenter d'éliminer les sujets trop déviants et ainsi rendre les groupes étudiés plus homogènes. Cette pratique n'a pas entièrement fait ses preuves pour autant, attendu qu'aucune étude ne l'a clairement validée, et que le niveau de tolérance à choisir reste arbitraire. Une autre approche consiste alors à utiliser des procédures d'analyse et de traitement des données intrinsèquement insensibles à l'hypothèse d'homogénéité. Elles sont en outre mieux adaptées aux données réelles en ce qu'elles tolèrent dans une certaine mesure d'autres violations d'hypothèse plus subtiles telle que la normalité des données. Un autre problème, partiellement lié, est le manque de stabilité et de sensibilité des méthodes d'analyse au niveau voxel, sources de résultats qui ne sont pas reproductibles.Nous commençons cette thèse par le développement d'une méthode de détection d'individus atypiques adaptée aux données de neuroimagerie, qui fournit un contrôle statistique sur l'inclusion de sujets : nous proposons une version regularisée d'un estimateur de covariance robuste pour le rendre utilisable en grande dimension. Nous comparons plusieurs types de régularisation et concluons que les projections aléatoires offrent le meilleur compromis. Nous présentons également des procédures non-paramétriques dont nous montrons la qualité de performance, bien qu'elles n'offrent aucun contrôle statistique. La seconde contribution de cette thèse est une nouvelle approche, nommée RPBI (Randomized Parcellation Based Inference), répondant au manque de reproductibilité des méthodes classiques. Nous stabilisons l'approche d'analyse à l'échelle de la parcelle en agrégeant plusieurs analyses indépendantes, pour lesquelles le partitionnement du cerveau en parcelles varie d'une analyse à l'autre. La méthode permet d'atteindre un niveau de sensibilité supérieur à celui des méthodes de l'état de l'art, ce que nous démontrons par des expériences sur des données synthétiques et réelles. Notre troisième contribution est une application de la régression robuste aux études de neuroimagerie. Poursuivant un travail déjà existant, nous nous concentrons sur les études à grande échelle effectuées sur plus de cent sujets. Considérant à la fois des données simulées et des données réelles, nous montrons que l'utilisation de la régression robuste améliore la sensibilité des analyses. Nous démontrons qu'il est important d'assurer une résistance face aux violations d'hypothèse, même dans les cas où une inspection minutieuse du jeu de données a été conduite au préalable. Enfin, nous associons la régression robuste à notre méthode d'analyse RPBI afin d'obtenir des tests statistiques encore plus sensibles
    corecore